Площадь параллелограмма равна произведению длины одной из сторон на синус угла между этой стороной и диагональю. S = AD AB sin(A), где A - угол между AD и AB.
40√2 = 10 AB sin(45) 40√2 = 10 AB √2 / 2 40√2 = 5AB AB = 8 см
Теперь найдем сторону BC:
Так как ABCD - параллелограмм, то AB=CD, а BC=AD. Таким образом, BC=10см.
Для начала найдем длину стороны AB:
Площадь параллелограмма равна произведению длины одной из сторон на синус угла между этой стороной и диагональю.
S = AD AB sin(A), где A - угол между AD и AB.
40√2 = 10 AB sin(45)
40√2 = 10 AB √2 / 2
40√2 = 5AB
AB = 8 см
Теперь найдем сторону BC:
Так как ABCD - параллелограмм, то AB=CD, а BC=AD. Таким образом, BC=10см.
Теперь найдем периметр параллелограмма:
P = 2(AB+AD) = 2(8см + 10см) = 36см
Ответ: Периметр параллелограмма равен 36 см.