Отрезки, на которые диагональ трапеции делит её среднюю линию, равны 5см и 9см. Найти основания трапеции

3 Сен 2019 в 15:41
251 +1
0
Ответы
1

Пусть основания трапеции равны a и b см.

Так как диагональ трапеции делит её среднюю линию на отрезки длиной 5 см и 9 см, то можем составить уравнение:

a + b = 14 см

Также, согласно свойствам трапеции, диагональ делит трапецию на два равнобедренных треугольника. Пусть c - высота треугольника, опущенная на боковую сторону b.

Используем теорему Пифагора для одного из треугольников:

c^2 + (a - b/2)^2 = 5^2

c^2 + a^2 - ab + b^2/4 = 25

Также для второго треугольника:

c^2 + (a + b/2)^2 = 9^2

c^2 + a^2 + ab + b^2/4 = 81

Из этих двух уравнений можно составить систему уравнений и решить ее.

Суть Анна: c^2 + a^2 - ab + b^2/4 = 25
Cbd: c^2 + a^2 + ab + b^2/4 = 81

Вычитаем Суть Анну из Сбд:
2ab = 56
ab = 28

Получаем систему:
ab = 28
a + b = 14

Из этой системы уравнений можно найти значения a и b:

a = 7
b = 7

Таким образом, основания трапеции равны 7 см и 7 см.

20 Апр в 04:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир