Длины оснований прямоугольной трапеции равны 10 см и 6 см. Больший угол равен 120°. Найти большую боковую сторону трапеции.
Ответ я уже знаю-8, ме нужно полное решение, только без синусов, косинусов и корней-мы еще не проходили.

17 Сен 2019 в 02:44
222 +1
0
Ответы
1

Для решения данной задачи мы можем воспользоваться свойством прямоугольной трапеции, что диагонали прямоугольной трапеции взаимно перпендикулярны.

Пусть AB и CD - основания прямоугольной трапеции, а AD и BC - боковые стороны. Поскольку угол A равен 120°, то угол D (смежный с углом A) равен 60°, так как сумма углов в треугольнике равна 180°.

Таким образом, треугольник ABD является треугольником трапеции, поэтому угол B также равен 90°. Так как AD и BC являются диагоналями, они взаимно перпендикулярны.

Теперь рассмотрим треугольник ABC. Мы знаем, что угол C равен 90°. По теореме Пифагора для этого треугольника мы имеем:

AB^2 + AC^2 = BC^2

10^2 + 6^2 = BC^2
100 + 36 = BC^2
136 = BC^2

BC = √136 = 2√34 ≈ 8

Таким образом, большая боковая сторона трапеции равна примерно 8 см.

19 Апр в 22:53
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 94 835 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир