tan^2(x) + 1 = sec^2(x)
Given sin(x) = 1/4, we can find cos(x) using the Pythagorean identity: sin^2(x) + cos^2(x) = 1(1/4)^2 + cos^2(x) = 11/16 + cos^2(x) = 1cos^2(x) = 1 - 1/16cos^2(x) = 15/16cos(x) = ±√(15)/4
Now that we have sin(x) and cos(x), we can find tan(x):tan(x) = sin(x) / cos(x)tan(x) = (1/4) / (±√(15)/4)tan(x) = 1/√(15) or -1/√(15)
Therefore, tg(x) = 1/√(15) or -1/√(15)
tan^2(x) + 1 = sec^2(x)
Given sin(x) = 1/4, we can find cos(x) using the Pythagorean identity: sin^2(x) + cos^2(x) = 1
(1/4)^2 + cos^2(x) = 1
1/16 + cos^2(x) = 1
cos^2(x) = 1 - 1/16
cos^2(x) = 15/16
cos(x) = ±√(15)/4
Now that we have sin(x) and cos(x), we can find tan(x):
tan(x) = sin(x) / cos(x)
tan(x) = (1/4) / (±√(15)/4)
tan(x) = 1/√(15) or -1/√(15)
Therefore, tg(x) = 1/√(15) or -1/√(15)