Для решения данной задачи нам необходимо найти гипотенузу прямоугольного треугольника по теореме Пифагора: c^2 = a^2 + b^2, где c - гипотенуза, a и b - катеты.
Таким образом, c^2 = 6^2 + 8^2, c^2 = 36 + 64, c^2 = 100, c = 10 см.
Теперь найдем радиусы вписанной и описанной окружностей.
Радиус описанной окружности равен половине гипотенузы: R = c / 2, R = 10 / 2, R = 5 см.
Радиус вписанной окружности можно найти по формуле: r = (a + b - c) / 2, r = (6 + 8 - 10) / 2, r = 4 / 2, r = 2 см.
Таким образом, радиус описанной окружности равен 5 см, а радиус вписанной окружности равен 2 см.
Для решения данной задачи нам необходимо найти гипотенузу прямоугольного треугольника по теореме Пифагора:
c^2 = a^2 + b^2,
где c - гипотенуза, a и b - катеты.
Таким образом, c^2 = 6^2 + 8^2,
c^2 = 36 + 64,
c^2 = 100,
c = 10 см.
Теперь найдем радиусы вписанной и описанной окружностей.
Радиус описанной окружности равен половине гипотенузы:
R = c / 2,
R = 10 / 2,
R = 5 см.
Радиус вписанной окружности можно найти по формуле:
r = (a + b - c) / 2,
r = (6 + 8 - 10) / 2,
r = 4 / 2,
r = 2 см.
Таким образом, радиус описанной окружности равен 5 см, а радиус вписанной окружности равен 2 см.