Для перевода чисел из шестнадцатеричной системы счисления (с основанием 16) в четверичную систему счисления (с основанием 4) нужно представить исходное число в десятичной системе счисления, а затем перевести полученное число в четверичную систему.
Для этого нам нужно сначала перевести число B1A из шестнадцатеричной системы в десятичную систему:
Для перевода чисел из шестнадцатеричной системы счисления (с основанием 16) в четверичную систему счисления (с основанием 4) нужно представить исходное число в десятичной системе счисления, а затем перевести полученное число в четверичную систему.
Для этого нам нужно сначала перевести число B1A из шестнадцатеричной системы в десятичную систему:
B1A = (11 16^2) + (1 16^1) + (10 16^0)
B1A = (11 256) + (1 16) + (10 1)
B1A = 2816 + 16 + 10
B1A = 2842
Теперь переведем полученное число 2842 из десятичной системы в четверичную систему:
2842 : 4 = 710, остаток 2
710 : 4 = 177, остаток 2
177 : 4 = 44, остаток 1
44 : 4 = 11, остаток 0
11 : 4 = 2, остаток 3
2 : 4 = 0, остаток 2
Исходное число B1A в шестнадцатеричной системе счисления равно числу 22312 в четверичной системе счисления.