Определите, сколько решений имеет задача Решать её не надо. Решите треугольник АВС, если ∠B = 24°, ВС = 40, АС = 18

7 Мая 2020 в 19:42
890 +1
0
Ответы
1

Дано: ∠B = 24°, ВС = 40, АС = 18

Так как у нас даны две стороны и угол между ними, мы можем воспользоваться законом косинусов для нахождения третьей стороны:

cos(A) = (b^2 + c^2 - a^2) / 2bc

где А - угол напротив стороны a, b и c - длины сторон.

Сначала найдем угол А:

cos(A) = (18^2 + 40^2 - 24^2) / (21840)
cos(A) = (324 + 1600 - 576) / 1440
cos(A) = 1348 / 1440
A = arccos(1348 / 1440) ≈ 18.28°

Теперь найдем третью сторону по теореме косинусов:

AC^2 = AB^2 + BC^2 - 2ABBCcos(A)
AC^2 = 18^2 + 40^2 - 21840cos(18.28°)
AC^2 = 324 + 1600 - 1440cos(18.28°)
AC = √(484 - 1314cos(18.28°))
AC ≈ √(484 - 1314*0.948) = √(484 - 1243.272)
AC ≈ √(484 - 1243.272) = √(759.272) ≈ 27.55

Таким образом, третья сторона треугольника AC ≈ 27.55.

18 Апр в 12:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 855 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир