Given that A + 1/A = 1, we can square this equation to get:
(A + 1/A)^2 = 1^2A^2 + 2 + 1/A^2 = 1A^2 + 1/A^2 = -1
Now, we can find A^2 2019 + 1/A^2 2019:
A^2019 + 1/A^2019 = A^(2018) A + 1/A^(2018) 1/A= A^(2018) A + 1/A^(2018) A= A^(2018) (A + 1/A)= A^(2018) 1= A^2018
Therefore, A^2019 + 1/A^2019 = A^2018.
Given that A + 1/A = 1, we can square this equation to get:
(A + 1/A)^2 = 1^2
A^2 + 2 + 1/A^2 = 1
A^2 + 1/A^2 = -1
Now, we can find A^2 2019 + 1/A^2 2019:
A^2019 + 1/A^2019 = A^(2018) A + 1/A^(2018) 1/A
= A^(2018) A + 1/A^(2018) A
= A^(2018) (A + 1/A)
= A^(2018) 1
= A^2018
Therefore, A^2019 + 1/A^2019 = A^2018.