y' = d/dx (arcsin(10x)) = 1 / sqrt(1 - (10x)^2) * 10y' = 10 / sqrt(1 - 100x^2)
y' = d/dx (arccos√3x) = -1 / sqrt(1 - (√3x)^2) * √3y' = -√3 / sqrt(1 - 3x^2)
y' = d/dx ((arctg(2x))^10x) = 10 (arctg(2x))^9 d/dx (arctg(2x))y' = 10 (arctg(2x))^9 (1 / (1 + (2x)^2)) 2y' = 20 (arctg(2x))^9 / (1 + 4x^2)
y' = d/dx (sin(2x+1)arctg(-x))y' = cos(2x+1)2 arctg(-x) + sin(2x+1) (-1 / (1 + (-x)^2))y' = 2cos(2x+1) arctg(-x) - sin(2x+1) / (1 + x^2)
y' = d/dx (arccos(2x)/(3-x^2))y' = ((-1 / sqrt(1 - (2x)^2)) 2 / (3 - x^2) - arccos(2x) (-2x) / (3 - x^2)^2) / (3 - x^2)y' = (-2 / sqrt(1 - 4x^2) - 2xarccos(2x) / (3 - x^2)^2) / (3 - x^2)
y' = d/dx (arcsin(10x)) = 1 / sqrt(1 - (10x)^2) * 10
y' = 10 / sqrt(1 - 100x^2)
y' = d/dx (arccos√3x) = -1 / sqrt(1 - (√3x)^2) * √3
y' = -√3 / sqrt(1 - 3x^2)
y' = d/dx ((arctg(2x))^10x) = 10 (arctg(2x))^9 d/dx (arctg(2x))
y' = 10 (arctg(2x))^9 (1 / (1 + (2x)^2)) 2
y' = 20 (arctg(2x))^9 / (1 + 4x^2)
y' = d/dx (sin(2x+1)arctg(-x))
y' = cos(2x+1)2 arctg(-x) + sin(2x+1) (-1 / (1 + (-x)^2))
y' = 2cos(2x+1) arctg(-x) - sin(2x+1) / (1 + x^2)
y' = d/dx (arccos(2x)/(3-x^2))
y' = ((-1 / sqrt(1 - (2x)^2)) 2 / (3 - x^2) - arccos(2x) (-2x) / (3 - x^2)^2) / (3 - x^2)
y' = (-2 / sqrt(1 - 4x^2) - 2xarccos(2x) / (3 - x^2)^2) / (3 - x^2)