Для нахождения производной функции f(x) сначала найдем значение производной ln (5-x^2)/ (5+x^2):
f(x) = ln (5-x^2)/ (5+x^2)
f'(x) = [(5+x^2) d/dx(ln(5-x^2)) - ln(5-x^2) d/dx(5+x^2)] / (5+x^2)^2
Здесь d/dx(ln(5-x^2)) = -2x/(5-x^2), а d/dx(5 + x^2) = 2x
f'(x) = [(5+x^2) (-2x/(5-x^2)) - ln(5-x^2) 2x] / (5+x^2)^2
f'(x) = [-2x(5+x^2)/(5-x^2) - 2xln(5-x^2)] / (5+x^2)^2
Теперь найдем f'(2):
f'(2) = [-22(5+2^2)/(5-2^2) - 2*2ln(5-2^2)] / (5+2^2)^2
f'(2) = [-8*(5+4)/(5-4) - 4ln(5-4)] / (5+4)^2
f'(2) = [-8*9/1 - 4ln(1)] / 81
f'(2) = [-72 - 0] / 81
f'(2) = -72 / 81
f'(2) = -8/9
Итак, f'(2) = -8/9.
Для нахождения производной функции f(x) сначала найдем значение производной ln (5-x^2)/ (5+x^2):
f(x) = ln (5-x^2)/ (5+x^2)
f'(x) = [(5+x^2) d/dx(ln(5-x^2)) - ln(5-x^2) d/dx(5+x^2)] / (5+x^2)^2
Здесь d/dx(ln(5-x^2)) = -2x/(5-x^2), а d/dx(5 + x^2) = 2x
f'(x) = [(5+x^2) (-2x/(5-x^2)) - ln(5-x^2) 2x] / (5+x^2)^2
f'(x) = [-2x(5+x^2)/(5-x^2) - 2xln(5-x^2)] / (5+x^2)^2
Теперь найдем f'(2):
f'(2) = [-22(5+2^2)/(5-2^2) - 2*2ln(5-2^2)] / (5+2^2)^2
f'(2) = [-8*(5+4)/(5-4) - 4ln(5-4)] / (5+4)^2
f'(2) = [-8*9/1 - 4ln(1)] / 81
f'(2) = [-72 - 0] / 81
f'(2) = -72 / 81
f'(2) = -8/9
Итак, f'(2) = -8/9.