Найдите наименьшее естественное решение уравнения: log 3 (5x - 2) - 2 log3 √3x + 1 <0 Решение:

22 Фев 2021 в 19:41
78 +1
1
Ответы
1

Для нахождения наименьшего естественного решения уравнения необходимо рассмотреть все возможные варианты значений переменной x.

Сначала преобразуем данное уравнение:
log3(5x - 2) - 2log3√3x + 1 < 0
log3(5x - 2) - log3(3x) + 1 < 0
log3[(5x - 2)/√3x] + 1 < 0
log3[(5x - 2)/√3x] < -1
(5x - 2)/√3x < 3^-1
(5x - 2)/√3x < 1/3
15x - 6 < √3x
15x - √3x < 6
(15 - √3)x < 6
x < 6/(15 - √3)
x < 6(15 + √3)/(15^2 - 3)
x < (90 + 6√3)/222

Таким образом, наименьшее естественное решение уравнения будет x < (90 + 6√3)/222.

17 Апр в 20:53
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир