sina-sin^3a/cos^2a = sin(a)(1-sin^2a)/cos^2a = sin(a)cos^2a/cos^2a = sin(a)
Теперь, cos((5π/2)-a) = cos(2π - a - π/2) = cos(-a-π/2) = cos(-a)cos(π/2) + sin(-a)sin(π/2) = -sin(a)
Таким образом, доказано тождество sina-sin^3a)/cos^2a = cos((5π/2)-a)
sina-sin^3a/cos^2a = sin(a)(1-sin^2a)/cos^2a = sin(a)cos^2a/cos^2a = sin(a)
Теперь, cos((5π/2)-a) = cos(2π - a - π/2) = cos(-a-π/2) = cos(-a)cos(π/2) + sin(-a)sin(π/2) = -sin(a)
Таким образом, доказано тождество sina-sin^3a)/cos^2a = cos((5π/2)-a)