Using the trigonometric identity sin(a)cos(b) = 0.5[sin(a+b) + sin(a-b)], we can simplify the expression:
sin(25)cos(5) + sin(25)cos(5)
= 0.5[sin(25+5) + sin(25-5)] + 0.5[sin(25+5) + sin(25-5)]
= 0.5[sin(30) + sin(20)] + 0.5[sin(30) + sin(20)]
= 0.5[0.5 + 0.34] + 0.5[0.5 + 0.34]
= 0.42 + 0.42
= 0.84
Therefore, sin(25)cos(5) + sin(25)cos(5) is equal to 0.84.
Using the trigonometric identity sin(a)cos(b) = 0.5[sin(a+b) + sin(a-b)], we can simplify the expression:
sin(25)cos(5) + sin(25)cos(5)
= 0.5[sin(25+5) + sin(25-5)] + 0.5[sin(25+5) + sin(25-5)]
= 0.5[sin(30) + sin(20)] + 0.5[sin(30) + sin(20)]
= 0.5[0.5 + 0.34] + 0.5[0.5 + 0.34]
= 0.42 + 0.42
= 0.84
Therefore, sin(25)cos(5) + sin(25)cos(5) is equal to 0.84.