Let's expand each side of the equation and simplify:
Left side:4x^2(2x+1)^2 - 2x(4x^2 -1)= 4x^2(4x^2 + 4x + 1) - 2x(4x^2 - 1)= 16x^4 + 16x^3 + 4x^2 - 8x^3 + 2x= 16x^4 + 8x^3 + 4x^2 + 2x
Right side:30(2x-1)^2= 30(4x^2 - 4x + 1)= 120x^2 - 120x + 30
Now, we compare the left side and the right side:
16x^4 + 8x^3 + 4x^2 + 2x = 120x^2 - 120x + 30
16x^4 + 8x^3 + 4x^2 + 2x is not equal to 120x^2 - 120x + 30, so the given equation is not valid.
Let's expand each side of the equation and simplify:
Left side:
4x^2(2x+1)^2 - 2x(4x^2 -1)
= 4x^2(4x^2 + 4x + 1) - 2x(4x^2 - 1)
= 16x^4 + 16x^3 + 4x^2 - 8x^3 + 2x
= 16x^4 + 8x^3 + 4x^2 + 2x
Right side:
30(2x-1)^2
= 30(4x^2 - 4x + 1)
= 120x^2 - 120x + 30
Now, we compare the left side and the right side:
16x^4 + 8x^3 + 4x^2 + 2x = 120x^2 - 120x + 30
16x^4 + 8x^3 + 4x^2 + 2x is not equal to 120x^2 - 120x + 30, so the given equation is not valid.