1) (3-a)³ = 3³ - 3 3² a + 3 3 a² - a³ = 27 - 27a + 9a² - a³2) (b+2)³ = b³ + 3b² 2 + 3b 2² + 2³ = b³ + 6b² + 12b + 83) (ab+1)³ = a³b³ + 3a²b² 1 + 3ab 1² + 1³ = a³b³ + 3a²b² + 3ab + 14) (1-x²)³ = 1³ - 3 1 x² + 3 * x⁴ - x⁶ = 1 - 3x² + 3x⁴ - x⁶
1) 8 - a³ = (2)³ - a³ = (2-a)(4+2a+a²)2) 27 - b³ = (3)³ - b³ = (3-b)(9+3b+b²)3) x³y³ - 2 = (xy)³ - 2 = (xy-∛2)(x²y²+∛2xy+∛4)4) 1 - a³b³ = (1 - ab)(1 + ab + a²b²)
1) (3-a)³ = 3³ - 3 3² a + 3 3 a² - a³ = 27 - 27a + 9a² - a³
2) (b+2)³ = b³ + 3b² 2 + 3b 2² + 2³ = b³ + 6b² + 12b + 8
3) (ab+1)³ = a³b³ + 3a²b² 1 + 3ab 1² + 1³ = a³b³ + 3a²b² + 3ab + 1
4) (1-x²)³ = 1³ - 3 1 x² + 3 * x⁴ - x⁶ = 1 - 3x² + 3x⁴ - x⁶
1) 8 - a³ = (2)³ - a³ = (2-a)(4+2a+a²)
2) 27 - b³ = (3)³ - b³ = (3-b)(9+3b+b²)
3) x³y³ - 2 = (xy)³ - 2 = (xy-∛2)(x²y²+∛2xy+∛4)
4) 1 - a³b³ = (1 - ab)(1 + ab + a²b²)