Let's simplify the left side of the equation first:
(4x+3)(5-x)-x^2= 20x - 4x^2 + 15 - 3x - x^2= 20x - 4x^2 + 15 - 3x - x^2= 20x - 4x^2 + 15 - 3x - x^2= 17x - 5x^2 + 15
Now, let's set that equal to the right side of the equation and solve for x:
17x - 5x^2 + 15 = 8x + 19-5x^2 + 17x + 15 = 8x + 19-5x^2 + 17x + 15 = 8x + 19-5x^2 + 17x + 15 = 8x + 19-5x^2 + 17x + 15 = 8x + 19-5x^2 + 17x + 15 - 8x - 19 = 0-5x^2 + 9x - 4 = 0
Now, let's solve for x by factoring or using the quadratic formula.
Let's simplify the left side of the equation first:
(4x+3)(5-x)-x^2
= 20x - 4x^2 + 15 - 3x - x^2
= 20x - 4x^2 + 15 - 3x - x^2
= 20x - 4x^2 + 15 - 3x - x^2
= 17x - 5x^2 + 15
Now, let's set that equal to the right side of the equation and solve for x:
17x - 5x^2 + 15 = 8x + 19
-5x^2 + 17x + 15 = 8x + 19
-5x^2 + 17x + 15 = 8x + 19
-5x^2 + 17x + 15 = 8x + 19
-5x^2 + 17x + 15 = 8x + 19
-5x^2 + 17x + 15 - 8x - 19 = 0
-5x^2 + 9x - 4 = 0
Now, let's solve for x by factoring or using the quadratic formula.