Объём и площадь поверхности. Основанием прямой треугольной призмы является равнобедренный треугольник с основанием 12,6 см, высотой 8,4 см и боковой стороной 10,5 см. Найди площадь полной поверхности и объем призмы, если ее высота равна 11,6 см.

12 Мая 2021 в 19:53
77 +1
0
Ответы
1

Для начала найдем боковую грань призмы. Для этого воспользуемся теоремой Пифагора для равнобедренного треугольника:
a^2 + b^2 = c^2,
где a = 10,5 см (боковая сторона), b = 6,3 см (половина основания), c - высота треугольника.

Из этого выражения найдем значение c:
6,3^2 + b^2 = 10,5^2,
39,69 + b^2 = 110,25,
b^2 = 70,56,
b = √70,56,
b ≈ 8,4 см.

Теперь можем найти площадь полной поверхности призмы:
Sполн = Sосн + 2Sбг,
Sполн = 12,68,4 + 2(12,6+10,5)*8,4,
Sполн = 105,84 + 319,68,
Sполн = 425,52 см^2.

Теперь найдем объем призмы:
V = Sосн h,
V = 12,68,411,6,
V = 12696,24,
V ≈ 1159,34 см^3.

Итак, площадь полной поверхности этой призмы составляет 425,52 кв. см, а объем - 1159,34 куб. см.

17 Апр в 18:37
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир