Let's simplify the given expression step by step:
First, expand the right side of the equation:(1 + ctg2a)(sin2a - cos2a) = sin2a + sin2a · ctg2a - cos2a - cos2a · ctg2a= sin2a + tan2a · sin2a - cos2a - cos2a · tan2a
Next, simplify the expression by using trigonometric identities:tan2a = sin2a/cos2aTherefore, tan2a · sin2a = sin2a/cos2a · sin2a = sin3a/cos2a
Applying this simplification:= sin2a + sin3a/cos2a - cos2a - cos3a/cos2a= sin2a + sin3a/cos2a - cos2a - sin2a= sin2a - cos2a
Now, the left side of the equation:1 - ctg2a
Since cotangent is the reciprocal of tangent, and tan2a = sin2a/cos2a, then cot2a = cos2a/sin2a. Therefore, ctg2a = cos2a/sin2a
Now, simplify the left side:1 - ctg2a = 1 - cos2a/sin2a = (sin2a - cos2a)/sin2a
Since (sin2a - cos2a)/sin2a = sin2a - cos2a, the left side simplifies to:1 - ctg2a = sin2a - cos2a
Therefore, the given equation simplifies to:sin2a - cos2a = sin2a - cos2a
This confirms that the given expression is true.
Let's simplify the given expression step by step:
First, expand the right side of the equation:
(1 + ctg2a)(sin2a - cos2a) = sin2a + sin2a · ctg2a - cos2a - cos2a · ctg2a
= sin2a + tan2a · sin2a - cos2a - cos2a · tan2a
Next, simplify the expression by using trigonometric identities:
tan2a = sin2a/cos2a
Therefore, tan2a · sin2a = sin2a/cos2a · sin2a = sin3a/cos2a
Applying this simplification:
= sin2a + sin3a/cos2a - cos2a - cos3a/cos2a
= sin2a + sin3a/cos2a - cos2a - sin2a
= sin2a - cos2a
Now, the left side of the equation:
1 - ctg2a
Since cotangent is the reciprocal of tangent, and tan2a = sin2a/cos2a, then cot2a = cos2a/sin2a. Therefore, ctg2a = cos2a/sin2a
Now, simplify the left side:
1 - ctg2a = 1 - cos2a/sin2a = (sin2a - cos2a)/sin2a
Since (sin2a - cos2a)/sin2a = sin2a - cos2a, the left side simplifies to:
1 - ctg2a = sin2a - cos2a
Therefore, the given equation simplifies to:
sin2a - cos2a = sin2a - cos2a
This confirms that the given expression is true.