Имеем уравнение:
4sin^2x = tgx
tgx = sin^2x/cos^2x
tgx = (1 - cos^2x)/cos^2x
tgx = 1/cos^2x - 1
tgx = sec^2x - 1
tgx = tan^2x
tan^2x - tgx = 0
tan^2x - sin^2x/cos^2x = 0
(sin^2x/cos^2x)^2 - sin^2x/cos^2x = 0
(sin^4x - sin^2x)/cos^4x = 0
sin^2x(sin^2x - 1)/cos^4x = 0
sin^2x(1 - sin^2x)/cos^4x = 0
sin^2x*cos^2x = 0
sin^2x = 0 или cos^2x = 0
sin^2x = 0sinx = 0
Таким образом, корни принадлежащие промежутку от [П ; 0] это x = П/2.
Имеем уравнение:
4sin^2x = tgx
tgx = sin^2x/cos^2x
tgx = (1 - cos^2x)/cos^2x
tgx = 1/cos^2x - 1
tgx = sec^2x - 1
tgx = tan^2x
tan^2x - tgx = 0
tan^2x - sin^2x/cos^2x = 0
(sin^2x/cos^2x)^2 - sin^2x/cos^2x = 0
(sin^4x - sin^2x)/cos^4x = 0
sin^2x(sin^2x - 1)/cos^4x = 0
sin^2x(1 - sin^2x)/cos^4x = 0
sin^2x*cos^2x = 0
sin^2x = 0 или cos^2x = 0
sin^2x = 0
sinx = 0
Таким образом, корни принадлежащие промежутку от [П ; 0] это x = П/2.