cos(pi/2+t) - sin(pi-t) = 1cos(pi/2)cos(t) - sin(pi)cos(t) + sin(t) = 10*cos(t) - (-1)cos(t) + sin(t) = 1cos(t) + sin(t) = 1
Now, we can use the identities cos(t) = sin(π/2 - t) and sin(t) = sin(π/2 + t) to simplify the equation:
sin(π/2 - t) + sin(π/2 + t) = 1sin(π/2)cos(t) - cos(π/2)sin(t) + sin(π/2)cos(t) + cos(π/2)sin(t) = 11 + 1 = 1
Therefore, the equation sin(π/2 - t) + sin(π/2 + t) = 1 has no solution.
cos(pi/2+t) - sin(pi-t) = 1
cos(pi/2)cos(t) - sin(pi)cos(t) + sin(t) = 1
0*cos(t) - (-1)cos(t) + sin(t) = 1
cos(t) + sin(t) = 1
Now, we can use the identities cos(t) = sin(π/2 - t) and sin(t) = sin(π/2 + t) to simplify the equation:
sin(π/2 - t) + sin(π/2 + t) = 1
sin(π/2)cos(t) - cos(π/2)sin(t) + sin(π/2)cos(t) + cos(π/2)sin(t) = 1
1 + 1 = 1
Therefore, the equation sin(π/2 - t) + sin(π/2 + t) = 1 has no solution.