9 Июн 2021 в 19:47
79 +1
0
Ответы
1

Чтобы решить выражение sin(6x)/cos(3x), можно воспользоваться формулой тангенса:
tan(x) = sin(x)/cos(x).

Далее, можно представить заданное выражение в виде:
sin(6x)/cos(3x) = tan(6x) / tan(3x).

Теперь с помощью формулы тангенса для суммы углов можно свести все к одному тангенсу:
tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b)).

Применяя эту формулу, получим:
tan(6x) / tan(3x) = tan(3x + 3x) / (1 - tan(3x)tan(3x))
= (tan(3x) + tan(3x)) / (1 - tan(3x)tan(3x))
= 2tan(3x) / (1 - tan^2(3x)).

Таким образом, выражение sin(6x)/cos(3x) можно упростить до 2tan(3x) / (1 - tan^2(3x)).

17 Апр в 16:52
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 436 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир