Let's first expand both terms:
(х+1)(х+2)(х+3) = х^3 + 6х^2 + 11х + 6
(х+1)(х+2)(х+3)(х+4) = (х^3 + 6х^2 + 11х + 6)(х+4)= х^4 + 6х^3 + 11х^2 + 6х + 4х^3 + 24х^2 + 44х + 24= х^4 + 10х^3 + 35х^2 + 50х + 24
Now, we add the two terms:
х^3 + 6х^2 + 11х + 6 + х^4 + 10х^3 + 35х^2 + 50х + 24 = 24
Rearranging the terms and simplifying, we get:
х^4 + 11х^3 + 41х^2 + 61х + 30 = 24
Subtracting 24 from both sides, we get:
х^4 + 11х^3 + 41х^2 + 61х + 6 = 0
Therefore, the solution to the equation is х = -2.
Let's first expand both terms:
(х+1)(х+2)(х+3) = х^3 + 6х^2 + 11х + 6
(х+1)(х+2)(х+3)(х+4) = (х^3 + 6х^2 + 11х + 6)(х+4)
= х^4 + 6х^3 + 11х^2 + 6х + 4х^3 + 24х^2 + 44х + 24
= х^4 + 10х^3 + 35х^2 + 50х + 24
Now, we add the two terms:
х^3 + 6х^2 + 11х + 6 + х^4 + 10х^3 + 35х^2 + 50х + 24 = 24
Rearranging the terms and simplifying, we get:
х^4 + 11х^3 + 41х^2 + 61х + 30 = 24
Subtracting 24 from both sides, we get:
х^4 + 11х^3 + 41х^2 + 61х + 6 = 0
Therefore, the solution to the equation is х = -2.