To simplify the given expression, we can use the trigonometric identity:
cos(2x) = 1 - 2sin^2(x)
Substitute cos(2x) with the identity:
(1 - 2sin^2(x)) + 5sin(x)cos(x) + 5cos^2(x) = 0
Expand:
1 - 2sin^2(x) + 5sin(x)cos(x) + 5cos^2(x) = 0
Rearrange:
5cos^2(x) - 2sin^2(x) + 5sin(x)cos(x) + 1 = 0
Now we have the simplified expression.
To simplify the given expression, we can use the trigonometric identity:
cos(2x) = 1 - 2sin^2(x)
Substitute cos(2x) with the identity:
(1 - 2sin^2(x)) + 5sin(x)cos(x) + 5cos^2(x) = 0
Expand:
1 - 2sin^2(x) + 5sin(x)cos(x) + 5cos^2(x) = 0
Rearrange:
5cos^2(x) - 2sin^2(x) + 5sin(x)cos(x) + 1 = 0
Now we have the simplified expression.