Для того чтобы найти нули функции y = 3x^2 + x - 2, мы должны решить уравнение 3x^2 + x - 2 = 0.
Чтобы найти нули функции, мы можем воспользоваться формулой дискриминанта: D = b^2 - 4ac, где в уравнении ax^2 + bx + c = 0, a = 3, b = 1, c = -2.
Вычислим дискриминант:D = 1^2 - 43(-2)D = 1 + 24D = 25
Так как дискриминант положительный, у нас есть два различных действительных корня уравнения.
Теперь найдем сами корни по формуле:x1,2 = (-b ± √D) / 2ax1 = (-1 + √25) / (23) = (4 / 6) = 2/3x2 = (-1 - √25) / (23) = (-6 / 6) = -1
Таким образом, нулями функции y = 3x^2 + x - 2 являются x = 2/3 и x = -1.
Для того чтобы найти нули функции y = 3x^2 + x - 2, мы должны решить уравнение 3x^2 + x - 2 = 0.
Чтобы найти нули функции, мы можем воспользоваться формулой дискриминанта: D = b^2 - 4ac, где в уравнении ax^2 + bx + c = 0, a = 3, b = 1, c = -2.
Вычислим дискриминант:
D = 1^2 - 43(-2)
D = 1 + 24
D = 25
Так как дискриминант положительный, у нас есть два различных действительных корня уравнения.
Теперь найдем сами корни по формуле:
x1,2 = (-b ± √D) / 2a
x1 = (-1 + √25) / (23) = (4 / 6) = 2/3
x2 = (-1 - √25) / (23) = (-6 / 6) = -1
Таким образом, нулями функции y = 3x^2 + x - 2 являются x = 2/3 и x = -1.