a) (2x+1)*(x-1) = 2x^2 + 2x - x - 1 = 2x^2 + x - 1
b) (3-y)^2 (y-4) = (9 - 6y + y^2) (y - 4) = 9y - 36 - 6y^2 + 4y - 16y + 6y^2 = -12y - 36
c) a^2 + (2-a)*(a+5) = a^2 + 2a + 10 - a^2 = 2a + 10
u) (b-1)*(b^2 + b - 2) = b^3 + b^2 - b^2 - b - 2b + 2 = b^3 - 3b + 2
Докажем тождество:3x(1-2x)(2x+1) = 3x - 6x^2 - 6x^2 - 12x = 3x - 12x^3 = 3x - 12x^3
Тождество доказано.
a) (2x+1)*(x-1) = 2x^2 + 2x - x - 1 = 2x^2 + x - 1
b) (3-y)^2 (y-4) = (9 - 6y + y^2) (y - 4) = 9y - 36 - 6y^2 + 4y - 16y + 6y^2 = -12y - 36
c) a^2 + (2-a)*(a+5) = a^2 + 2a + 10 - a^2 = 2a + 10
u) (b-1)*(b^2 + b - 2) = b^3 + b^2 - b^2 - b - 2b + 2 = b^3 - 3b + 2
Докажем тождество:
3x(1-2x)(2x+1) = 3x - 6x^2 - 6x^2 - 12x = 3x - 12x^3 = 3x - 12x^3
Тождество доказано.