Let's simplify the expression step by step:
√(13+√105) = √(13+√(5*21)) = √(13+√5√21) = √(13+√5√3√7) = √(13+√15√7)
√(13-√105) = √(13-√(5*21)) = √(13-√5√21) = √(13-√5√3√7) = √(13-√15√7)
Now, let's add both results:√(13+√15√7) + √(13-√15√7)
Let's square the result:(√(13+√15√7) + √(13-√15√7))^2 = 13 + √15√7 + √15√7 + 13= 26 + 2√15√7= 26 + 2√(157)= 26 + 2√105= 26 + 2√(521)= 26 + 2√5√21= 26 + 2√5√3√7= 26 + 2√15√7
So, the final simplified expression is (26 + 2√15√7)^2.
Let's simplify the expression step by step:
√(13+√105) = √(13+√(5*21)) = √(13+√5√21) = √(13+√5√3√7) = √(13+√15√7)
√(13-√105) = √(13-√(5*21)) = √(13-√5√21) = √(13-√5√3√7) = √(13-√15√7)
Now, let's add both results:
√(13+√15√7) + √(13-√15√7)
Let's square the result:
(√(13+√15√7) + √(13-√15√7))^2 = 13 + √15√7 + √15√7 + 13
= 26 + 2√15√7
= 26 + 2√(157)
= 26 + 2√105
= 26 + 2√(521)
= 26 + 2√5√21
= 26 + 2√5√3√7
= 26 + 2√15√7
So, the final simplified expression is (26 + 2√15√7)^2.