sqrt(32) - sqrt(128)*sin^2(9π/8)
First, simplify the square roots:
sqrt(32) = sqrt(162) = sqrt(16)sqrt(2) = 4*sqrt(2)
sqrt(128) = sqrt(642) = sqrt(64)sqrt(2) = 8*sqrt(2)
Now substitute these values back into the original expression:
4sqrt(2) - 8sqrt(2)*sin^2(9π/8)
Next, note that sin^2(π - x) = sin^2(x). Therefore, sin^2(9π/8) = sin^2(π + π/8) = sin^2(π/8).
Substitute this back into the expression:
4sqrt(2) - 8sqrt(2)*sin^2(π/8)
Since sin(π/8) = sin(22.5 degrees) = sqrt(2-sqrt(2))/2, the final expression becomes:
4sqrt(2) - 8sqrt(2)*((2-sqrt(2))/2)
Simplify this expression:
4sqrt(2) - 4sqrt(2)*(2 - sqrt(2))
= 4sqrt(2) - 8sqrt(2) + 4*sqrt(2)
= 4sqrt(2) + 4sqrt(2) - 8*sqrt(2)
= 8sqrt(2) - 8sqrt(2)
= 0
Therefore, Sqrt 32-sqrt 128*sin^2(9π/8) simplifies to 0.
sqrt(32) - sqrt(128)*sin^2(9π/8)
First, simplify the square roots:
sqrt(32) = sqrt(162) = sqrt(16)sqrt(2) = 4*sqrt(2)
sqrt(128) = sqrt(642) = sqrt(64)sqrt(2) = 8*sqrt(2)
Now substitute these values back into the original expression:
4sqrt(2) - 8sqrt(2)*sin^2(9π/8)
Next, note that sin^2(π - x) = sin^2(x). Therefore, sin^2(9π/8) = sin^2(π + π/8) = sin^2(π/8).
Substitute this back into the expression:
4sqrt(2) - 8sqrt(2)*sin^2(π/8)
Since sin(π/8) = sin(22.5 degrees) = sqrt(2-sqrt(2))/2, the final expression becomes:
4sqrt(2) - 8sqrt(2)*((2-sqrt(2))/2)
Simplify this expression:
4sqrt(2) - 4sqrt(2)*(2 - sqrt(2))
= 4sqrt(2) - 8sqrt(2) + 4*sqrt(2)
= 4sqrt(2) + 4sqrt(2) - 8*sqrt(2)
= 8sqrt(2) - 8sqrt(2)
= 0
Therefore, Sqrt 32-sqrt 128*sin^2(9π/8) simplifies to 0.