To simplify this expression, we can use trigonometric identities to rewrite each term in a more convenient form.
Starting with the first term, cos(n-t):
cos(n-t) = cos(n)cos(t) + sin(n)sin(t)
Next, the second term, cos(n/2-t):
cos(n/2-t) = cos(n/2)cos(t) + sin(n/2)sin(t)
For the denominator, sin(2n-t):
sin(2n-t) = sin(2n)cos(t) - cos(2n)sin(t)
And finally, sin(3n/2-t):
sin(3n/2-t) = sin(3n/2)cos(t) - cos(3n/2)sin(t)
Now, we can substitute these expressions into the main expression to get:
[cos(n)cos(t) + sin(n)sin(t) + cos(n/2)cos(t) + sin(n/2)sin(t)] / [sin(2n)cos(t) - cos(2n)sin(t) - sin(3n/2)cos(t) + cos(3n/2)sin(t)]
= [cos(n)cos(t) + cos(n/2)cos(t) + sin(n)sin(t) + sin(n/2)sin(t)] / [sin(2n)cos(t) - sin(3n/2)cos(t) - cos(2n)sin(t) + cos(3n/2)sin(t)]
This is the simplified form of the expression provided.
To simplify this expression, we can use trigonometric identities to rewrite each term in a more convenient form.
Starting with the first term, cos(n-t):
cos(n-t) = cos(n)cos(t) + sin(n)sin(t)
Next, the second term, cos(n/2-t):
cos(n/2-t) = cos(n/2)cos(t) + sin(n/2)sin(t)
For the denominator, sin(2n-t):
sin(2n-t) = sin(2n)cos(t) - cos(2n)sin(t)
And finally, sin(3n/2-t):
sin(3n/2-t) = sin(3n/2)cos(t) - cos(3n/2)sin(t)
Now, we can substitute these expressions into the main expression to get:
[cos(n)cos(t) + sin(n)sin(t) + cos(n/2)cos(t) + sin(n/2)sin(t)] / [sin(2n)cos(t) - cos(2n)sin(t) - sin(3n/2)cos(t) + cos(3n/2)sin(t)]
= [cos(n)cos(t) + cos(n/2)cos(t) + sin(n)sin(t) + sin(n/2)sin(t)] / [sin(2n)cos(t) - sin(3n/2)cos(t) - cos(2n)sin(t) + cos(3n/2)sin(t)]
This is the simplified form of the expression provided.