Для нахождения значений функции f(x) в данных точках подставим соответствующие значения угла x:
f(0) = 4sin(30) + 5cos(30) - 2sin(0)f(0) = 4sin(0) + 5cos(0) - 2sin(0) = 0 + 5*1 - 0 = 5
f(π/6) = 4sin(3π/6) + 5cos(3π/6) - 2sin(π/6)f(π/6) = 4sin(π/2) + 5cos(π/2) - 2sin(π/6) = 41 + 50 - 2*1/2 = 4 - 1 = 3
f(π/3) = 4sin(3π/3) + 5cos(3π/3) - 2sin(π/3)f(π/3) = 4sin(π) + 5cos(π) - 2sin(π/3) = 40 + 5(-1) - 2*√3/2 = -5 - √3
f(π) = 4sin(3π) + 5cos(3π) - 2sin(π)f(π) = 4sin(0) + 5cos(0) - 2sin(π) = 0 + 5*1 - 0 = 5
Таким образом, f(0) = 5, f(π/6) = 3, f(π/3) = -5 - √3, f(π) = 5.
Для нахождения значений функции f(x) в данных точках подставим соответствующие значения угла x:
f(0) = 4sin(30) + 5cos(30) - 2sin(0)
f(0) = 4sin(0) + 5cos(0) - 2sin(0) = 0 + 5*1 - 0 = 5
f(π/6) = 4sin(3π/6) + 5cos(3π/6) - 2sin(π/6)
f(π/6) = 4sin(π/2) + 5cos(π/2) - 2sin(π/6) = 41 + 50 - 2*1/2 = 4 - 1 = 3
f(π/3) = 4sin(3π/3) + 5cos(3π/3) - 2sin(π/3)
f(π/3) = 4sin(π) + 5cos(π) - 2sin(π/3) = 40 + 5(-1) - 2*√3/2 = -5 - √3
f(π) = 4sin(3π) + 5cos(3π) - 2sin(π)
f(π) = 4sin(0) + 5cos(0) - 2sin(π) = 0 + 5*1 - 0 = 5
Таким образом, f(0) = 5, f(π/6) = 3, f(π/3) = -5 - √3, f(π) = 5.