To solve this equation, we can first simplify the logarithmic expression using the property log(a^n) = n*log(a):
Og 9(6√6-15)^2 + log 27(6√6+15)^3= log(9^1 (6√6-15)^2) + log(27^1 (6√6+15)^3)= log((9 (6√6-15))^2) + log((27 (6√6+15))^3)= log((54√6-135)^2) + log((162√6+405)^3)
Now, we can use the log properties log(a) + log(b) = log(ab) and log(a^b) = b*log(a) to simplify further:
= log((54√6-135)^2 (162√6+405)^3)= log((54√6-135) (162√6+405))^2
Now, we have:Og 9(6√6-15)^2 + log 27(6√6+15)^3 = log((54√6-135) * (162√6+405))^2
Since the above expression equals 2, we have:log((54√6-135)*(162√6+405)) = √2
To solve for (54√6-135)*(162√6+405), we can first expand the product using the distributive property:
(54√6-135)(162√6+405)= 54√6162√6 + 54√6405 - 135162√6 - 135405= 54 162 6 + 54 405√6 - 135 162√6 - 135 405= 54 972 - 135 162√6 - 135 * 405= 52488 - 21870√6 - 54675
Therefore, the simplified expression is:52488 - 21870√6 - 54675 = √2
This equation can be solved further to find the value of the unknown in the equation.
To solve this equation, we can first simplify the logarithmic expression using the property log(a^n) = n*log(a):
Og 9(6√6-15)^2 + log 27(6√6+15)^3
= log(9^1 (6√6-15)^2) + log(27^1 (6√6+15)^3)
= log((9 (6√6-15))^2) + log((27 (6√6+15))^3)
= log((54√6-135)^2) + log((162√6+405)^3)
Now, we can use the log properties log(a) + log(b) = log(ab) and log(a^b) = b*log(a) to simplify further:
= log((54√6-135)^2 (162√6+405)^3)
= log((54√6-135) (162√6+405))^2
Now, we have:
Og 9(6√6-15)^2 + log 27(6√6+15)^3 = log((54√6-135) * (162√6+405))^2
Since the above expression equals 2, we have:
log((54√6-135)*(162√6+405)) = √2
To solve for (54√6-135)*(162√6+405), we can first expand the product using the distributive property:
(54√6-135)(162√6+405)
= 54√6162√6 + 54√6405 - 135162√6 - 135405
= 54 162 6 + 54 405√6 - 135 162√6 - 135 405
= 54 972 - 135 162√6 - 135 * 405
= 52488 - 21870√6 - 54675
Therefore, the simplified expression is:
52488 - 21870√6 - 54675 = √2
This equation can be solved further to find the value of the unknown in the equation.