Let's start by simplifying the expression:
(ctg^2a - cos^2a)(1/cos^2a - 1)
We can re-write cotangent as 1/tan:(1/tan^2a - cos^2a)(1/cos^2a - 1)
Using the identity tan^2a + 1 = sec^2a, we can rewrite 1/tan^2a as sec^2a:(sec^2a - cos^2a)(1/cos^2a - 1)
Now, we can expand the expression:sec^2a/cos^2a - cos^2a/cos^2a - sec^2a + cos^2a
Simplifying further:sec^2a/cos^2a - 1 - sec^2a + cos^2a
Now we can substitute sec^2a for 1 + tan^2a:(1 + tan^2a) / cos^2a - 1 - (1 + tan^2a) + cos^2a
Expanding again:tan^2a / cos^2a + 1 / cos^2a - 1 - 1 - tan^2a + cos^2a
Simplifying:tan^2a / cos^2a + 1 / cos^2a - 2 - tan^2a + cos^2a
Now we can simplify further by using the trigonometric identities tan^2a = sec^2a - 1 and sec^2a = 1 + tan^2a:(sec^2a - 1) / cos^2a + sec^2a / cos^2a - 2 - (sec^2a - 1) + cos^2a
Expanding:sec^2a / cos^2a - 1 / cos^2a + sec^2a / cos^2a - 2 - sec^2a + 1 + cos^2a
Simplifying:(sec^2a + sec^2a - 1) / cos^2a - 2 - sec^2a + cos^2a
Further simplification:(2sec^2a - 1) / cos^2a - 2 - sec^2a + cos^2a
And that is the simplified expression for (ctg^2a - cos^2a)(1/cos^2a - 1).
Let's start by simplifying the expression:
(ctg^2a - cos^2a)(1/cos^2a - 1)
We can re-write cotangent as 1/tan:
(1/tan^2a - cos^2a)(1/cos^2a - 1)
Using the identity tan^2a + 1 = sec^2a, we can rewrite 1/tan^2a as sec^2a:
(sec^2a - cos^2a)(1/cos^2a - 1)
Now, we can expand the expression:
sec^2a/cos^2a - cos^2a/cos^2a - sec^2a + cos^2a
Simplifying further:
sec^2a/cos^2a - 1 - sec^2a + cos^2a
Now we can substitute sec^2a for 1 + tan^2a:
(1 + tan^2a) / cos^2a - 1 - (1 + tan^2a) + cos^2a
Expanding again:
tan^2a / cos^2a + 1 / cos^2a - 1 - 1 - tan^2a + cos^2a
Simplifying:
tan^2a / cos^2a + 1 / cos^2a - 2 - tan^2a + cos^2a
Now we can simplify further by using the trigonometric identities tan^2a = sec^2a - 1 and sec^2a = 1 + tan^2a:
(sec^2a - 1) / cos^2a + sec^2a / cos^2a - 2 - (sec^2a - 1) + cos^2a
Expanding:
sec^2a / cos^2a - 1 / cos^2a + sec^2a / cos^2a - 2 - sec^2a + 1 + cos^2a
Simplifying:
(sec^2a + sec^2a - 1) / cos^2a - 2 - sec^2a + cos^2a
Further simplification:
(2sec^2a - 1) / cos^2a - 2 - sec^2a + cos^2a
And that is the simplified expression for (ctg^2a - cos^2a)(1/cos^2a - 1).