20 Сен 2021 в 19:46
24 +1
0
Ответы
1

Интеграл от dx/(2+3x^2) можно вычислить с помощью метода подстановки. Обозначим u = √(3)x. Тогда du = √(3)dx, откуда dx = du/√(3). Подставим в интеграл:

∫ dx/(2+3x^2) = ∫ du/(2+u^2)
Заметим, что здесь появляется интеграл от функции вида 1/(a^2 + x^2), который равен (1/a)*arctan(x/a). Применяем эту формулу:

= 1/√3 arctan(u/√3) + C
= 1/√3 arctan(√(3)x/√3) + C
= 1/√3 arctan(x) + C

Итак, интеграл от dx/(2+3x^2) равен (1/√3)*arctan(x) + C, где C - произвольная постоянная.

17 Апр в 11:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир