1) 2cos5x + √3=0; 2) 8sinx + 5= 2cos2x; 3) cos² x/3 - 5sinx/3·cosx/3 = 3; 4) (2sinx - 1)·sinx = sin2x-cosx; 5) cos(π+x) - sin(π/2 +x) - sin2x=0; 6) 5sin2x - 2cosx = 0; 7) cos2x - cos6x = 7sin²x2x; 8) √2sin10x + sin2x = cos2x.

7 Окт 2021 в 19:41
129 +1
1
Ответы
1

1) 2cos5x + √3=0
2cos5x = -√3
cos5x = -√3/2
5x = ±2π/3 + 2kπ
x = ±2π/15 + 2kπ, where k is an integer.

2) 8sinx + 5 = 2cos2x
8sinx + 5 = 2(1 - 2sin²x)
8sinx + 5 = 2 - 4sin²x
4sin²x + 8sinx + 3 = 0
(2sinx + 1)(2sinx + 3) = 0
sinx = -1/2 or sinx = -3/2 (no real solution)

3) cos²(x/3) - 5sin(x/3)cos(x/3) = 3
cos²(x/3) - 5sin(x/3)cos(x/3) - 3 = 0
(cos(x/3) - 3)(cos(x/3) + 1) = 0
cos(x/3) = 3 or cos(x/3) = -1 (no real solution)

4) (2sinx - 1)sinx = sin2x - cosx
2sin²x - sinx = 2sinxcosx - cosx
2sin²x - 3sinx + 1 = 0
sinx = (3 ± √5)/4
x = arcsin((3 ± √5)/4) + 2kπ or x = π - arcsin((3 ± √5)/4) + 2kπ, where k is an integer.

5) cos(π+x) - sin(π/2 +x) - sin2x = 0
-sin(x) - cos(x) - sin2x = 0
-sin(x) - cos(x) - 2sinxcosx = 0
-sin(x)(1 + 2cosx) - cos(x) = 0
sin(x)(2cos(x) + 1) + cos(x) = 0
tan(x) = -2

6) 5sin2x - 2cosx = 0
5(2sinxcosx) - 2cosx = 0
10sinxcosx - 2cosx = 0
2(5sinx - 1)cosx = 0
cosx = 0 or sinx = 1/5 (no real solution)

7) cos2x - cos6x = 7sin²x
2cos²x - 1 - (32cos³x - 48cosx) = 7 - 7cos²x
2cos²x - 1 - 32cos³x + 48cosx = 7 - 7cos²x
2cos²x + 7cos²x - 32cos³x - 48cosx - 8 = 0
cosx = -4/3 or cosx = 2
x = arccos(-4/3) + 2kπ or x = arccos(2) + 2kπ, where k is an integer.

8) √2sin10x + sin2x = cos2x
sin(10x) = √2 - 1
10x = arcsin(√2 - 1) + 2kπ or 10x = π - arcsin(√2 - 1) + 2kπ, where k is an integer.

17 Апр в 10:21
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 94 724 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир