Expanding the given expression step by step:
(2+x)(2-x) = 2(2) + 2(-x) + x(2) + x(-x) = 4 - 2x + 2x - x^2 = 4 - x^2
(7-x)3 = 7(3) - x(3) = 21 - 3x
Now, we substitute these expressions back into the original equation:
(2+x)(2-x) + (7-x)3 - 2(2+x) = (4 - x^2) + (21 - 3x) - 2(2 + x)= 4 - x^2 + 21 - 3x - 4 - 2x= 25 - x^2 - 5x
So, the simplified expression is 25 - x^2 - 5x.
Expanding the given expression step by step:
(2+x)(2-x) = 2(2) + 2(-x) + x(2) + x(-x) = 4 - 2x + 2x - x^2 = 4 - x^2
(7-x)3 = 7(3) - x(3) = 21 - 3x
Now, we substitute these expressions back into the original equation:
(2+x)(2-x) + (7-x)3 - 2(2+x) = (4 - x^2) + (21 - 3x) - 2(2 + x)
= 4 - x^2 + 21 - 3x - 4 - 2x
= 25 - x^2 - 5x
So, the simplified expression is 25 - x^2 - 5x.