Для нахождения уравнения прямой, проходящей через две заданные точки, нужно вычислить угловой коэффициент прямой и подставить его в общее уравнение прямой.
Угловой коэффициент (k) находится по формуле: k = (y2 - y1) / (x2 - x1), где (x1;y1) и (x2;y2) - координаты заданных точек.
Для точек (5;9) и (15;34): k = (34 - 9) / (15 - 5) = 25 / 10 = 2.5
Теперь найдем уравнение прямой в общем виде y = kx + b, где b - это свободный член. Для нахождения b, подставим координаты одной из точек в уравнение: 9 = 2.5 * 5 + b 9 = 12.5 + b b = 9 - 12.5 = -3.5
Итак, уравнение прямой, проходящей через точки (5;9) и (15;34), будет: y = 2.5x - 3.5
Для нахождения уравнения прямой, проходящей через две заданные точки, нужно вычислить угловой коэффициент прямой и подставить его в общее уравнение прямой.
Угловой коэффициент (k) находится по формуле:
k = (y2 - y1) / (x2 - x1), где (x1;y1) и (x2;y2) - координаты заданных точек.
Для точек (5;9) и (15;34):
k = (34 - 9) / (15 - 5) = 25 / 10 = 2.5
Теперь найдем уравнение прямой в общем виде y = kx + b, где b - это свободный член. Для нахождения b, подставим координаты одной из точек в уравнение:
9 = 2.5 * 5 + b
9 = 12.5 + b
b = 9 - 12.5 = -3.5
Итак, уравнение прямой, проходящей через точки (5;9) и (15;34), будет:
y = 2.5x - 3.5