Найти производную функции f(x)=6/x^4-x^5/2+2кореньх

14 Окт 2021 в 19:46
52 +1
0
Ответы
1

Для нахождения производной данной функции f(x)=6/x^4-x^5/2+2*sqrt(x), нужно воспользоваться правилами дифференцирования.

f'(x) = d/dx(6/x^4) - d/dx(x^5/2) + d/dx(2*sqrt(x))

f'(x) = -24/x^5 - (5/2)x^(5-1) + 2/(2*sqrt(x))

f'(x) = -24/x^5 - (5/2)x^4 + 1/sqrt(x)

Итак, производная функции f(x) равна f'(x) = -24/x^5 - (5/2)x^4 + 1/sqrt(x).

17 Апр 2024 в 09:58
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 157 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир