Для начала нам нужно найти высоту пирамиды.
Рассмотрим прямоугольный треугольник SBC. В нем известны гипотенуза и катет, поэтому мы можем найти второй катет:
BC = √(SC^2 - SB^2) = √(17^2 - 15^2) = √(289 - 225) = √64 = 8.
Теперь рассмотрим треугольник ABC. Он равнобедренный, так как AB = AC. Найдем высоту этого треугольника:
h = √(AB^2 - BC^2/4) = √(15√2^2 - 8^2/4) = √(450 - 64) = √386.
Теперь мы можем найти объем пирамиды:
V = (1/3) S_осн h = (1/3) 15√2 √386 = 5√2 √386 = 5√(2 386) = 5√772.
Таким образом, объем пирамиды равен 5√772.
Для начала нам нужно найти высоту пирамиды.
Рассмотрим прямоугольный треугольник SBC. В нем известны гипотенуза и катет, поэтому мы можем найти второй катет:
BC = √(SC^2 - SB^2) = √(17^2 - 15^2) = √(289 - 225) = √64 = 8.
Теперь рассмотрим треугольник ABC. Он равнобедренный, так как AB = AC. Найдем высоту этого треугольника:
h = √(AB^2 - BC^2/4) = √(15√2^2 - 8^2/4) = √(450 - 64) = √386.
Теперь мы можем найти объем пирамиды:
V = (1/3) S_осн h = (1/3) 15√2 √386 = 5√2 √386 = 5√(2 386) = 5√772.
Таким образом, объем пирамиды равен 5√772.