First, we need to simplify each logarithmic expression:
log0,6 0,36 = log0,6 (6*0,06) = log0,6 6 + log0,6 0,06 = 1 + log0,6 0,06
log0,3 0,027 = log0,3 (3*0,009) = log0,3 3 + log0,3 0,009 = 1 + log0,3 0,009
Now we need to apply the logarithmic property that states log_a b = log_a c - log_a d is equivalent to log_a (b/d) = c:
1 + log0,6 0,06 - 1 - log0,3 0,009= 1 + log0,6 0,06 - 1 - log0,3 0,03= 1 + log0,6 0,06 - 1 - log0,6 0,06= 0
Therefore, the final simplified expression is 0.
First, we need to simplify each logarithmic expression:
log0,6 0,36 = log0,6 (6*0,06) = log0,6 6 + log0,6 0,06 = 1 + log0,6 0,06
log0,3 0,027 = log0,3 (3*0,009) = log0,3 3 + log0,3 0,009 = 1 + log0,3 0,009
Now we need to apply the logarithmic property that states log_a b = log_a c - log_a d is equivalent to log_a (b/d) = c:
1 + log0,6 0,06 - 1 - log0,3 0,009
= 1 + log0,6 0,06 - 1 - log0,3 0,03
= 1 + log0,6 0,06 - 1 - log0,6 0,06
= 0
Therefore, the final simplified expression is 0.