To simplify the expression, we first need to remember that sqrt(a b) = sqrt(a) sqrt(b).
Given expression: sqrt(88 - 30sqrt(7)) - 3sqrt(7)
Now, let's break down the expression further:
sqrt(88 - 30sqrt(7)) = sqrt(4 22 - 30sqrt(7))= sqrt(4) sqrt(22) - sqrt(4) sqrt(30) sqrt(7)= 2sqrt(22) - 2sqrt(30)sqrt(7)= 2sqrt(22) - 2sqrt(210)= 2sqrt(22) - 2sqrt(2 105)= 2sqrt(22) - 2sqrt(2) sqrt(105)= 2sqrt(22) - 2sqrt(2) * 5sqrt(7)= 2sqrt(22) - 10sqrt(14)
Now, we substitute the simplified value back into the original expression:
2sqrt(22) - 10sqrt(14) - 3sqrt(7)= 2sqrt(22) - 10sqrt(14) - 3sqrt(7)
Thus, the simplified form of the expression sqrt(88 - 30sqrt(7)) - 3sqrt(7) is 2sqrt(22) - 10sqrt(14) - 3sqrt(7).
To simplify the expression, we first need to remember that sqrt(a b) = sqrt(a) sqrt(b).
Given expression: sqrt(88 - 30sqrt(7)) - 3sqrt(7)
Now, let's break down the expression further:
sqrt(88 - 30sqrt(7)) = sqrt(4 22 - 30sqrt(7))
= sqrt(4) sqrt(22) - sqrt(4) sqrt(30) sqrt(7)
= 2sqrt(22) - 2sqrt(30)sqrt(7)
= 2sqrt(22) - 2sqrt(210)
= 2sqrt(22) - 2sqrt(2 105)
= 2sqrt(22) - 2sqrt(2) sqrt(105)
= 2sqrt(22) - 2sqrt(2) * 5sqrt(7)
= 2sqrt(22) - 10sqrt(14)
Now, we substitute the simplified value back into the original expression:
2sqrt(22) - 10sqrt(14) - 3sqrt(7)
= 2sqrt(22) - 10sqrt(14) - 3sqrt(7)
Thus, the simplified form of the expression sqrt(88 - 30sqrt(7)) - 3sqrt(7) is 2sqrt(22) - 10sqrt(14) - 3sqrt(7).