To simplify the given expression, we will use the trigonometric identities:
1) sin^2x + cos^2x = 12) sin2x = 2sinxcosx
Starting with the given expression:sin^2x - 9sinxcosx + 3cos^2x = -1
Rearranging terms we get:(sin^2x + 3cos^2x) - 9sinxcosx = -1
Now, substitute sin^2x + cos^2x = 1:1 + 2cos^2x - 9sinxcosx = -1
Rearranging terms:2cos^2x - 9sinxcosx = -2
Applying double angle identity for cosine:2(1 - 2sin^2x) - 9sinxcosx = -22 - 4sin^2x - 9sinxcosx = -2
Rearranging terms one more time:4sin^2x + 9sinxcosx = 4
Now, recall that sin2x = 2sinxcosx:2(2sin^2x + 9sinxcosx) = 2(4)4sin2x = 8
Therefore, the simplified form of the given expression is 4sin2x = 8.
To simplify the given expression, we will use the trigonometric identities:
1) sin^2x + cos^2x = 1
2) sin2x = 2sinxcosx
Starting with the given expression:
sin^2x - 9sinxcosx + 3cos^2x = -1
Rearranging terms we get:
(sin^2x + 3cos^2x) - 9sinxcosx = -1
Now, substitute sin^2x + cos^2x = 1:
1 + 2cos^2x - 9sinxcosx = -1
Rearranging terms:
2cos^2x - 9sinxcosx = -2
Applying double angle identity for cosine:
2(1 - 2sin^2x) - 9sinxcosx = -2
2 - 4sin^2x - 9sinxcosx = -2
Rearranging terms one more time:
4sin^2x + 9sinxcosx = 4
Now, recall that sin2x = 2sinxcosx:
2(2sin^2x + 9sinxcosx) = 2(4)
4sin2x = 8
Therefore, the simplified form of the given expression is 4sin2x = 8.