To prove that cos^4 - sin^4 = √3, we will use the fundamental trigonometric identity:
cos^2 θ + sin^2 θ = 1
Now, let's manipulate the expression cos^4 θ - sin^4 θ:
cos^4 θ - sin^4 θ= (cos^2 θ)^2 - (sin^2 θ)^2= (cos^2 θ + sin^2 θ)(cos^2 θ - sin^2 θ)= 1*(cos^2 θ - sin^2 θ)= cos^2 θ - sin^2 θ
Next, we will use the double angle identities:
cos(2θ) = cos^2 θ - sin^2 θsin(2θ) = 2sinθcosθ
Because cos(2θ) = cos^2 θ - sin^2 θ, we can rewrite cos^4 θ - sin^4 θ as cos(4θ). So, we have:
cos^4 θ - sin^4 θ = cos(4θ)
Now, since cos(4θ) = √3/2 for θ = π/12, then:
cos^4 θ - sin^4 θ= cos(4θ)= cos(π/3)= √3/2
Therefore, cos^4 θ - sin^4 θ = √3.
To prove that cos^4 - sin^4 = √3, we will use the fundamental trigonometric identity:
cos^2 θ + sin^2 θ = 1
Now, let's manipulate the expression cos^4 θ - sin^4 θ:
cos^4 θ - sin^4 θ
= (cos^2 θ)^2 - (sin^2 θ)^2
= (cos^2 θ + sin^2 θ)(cos^2 θ - sin^2 θ)
= 1*(cos^2 θ - sin^2 θ)
= cos^2 θ - sin^2 θ
Next, we will use the double angle identities:
cos(2θ) = cos^2 θ - sin^2 θ
sin(2θ) = 2sinθcosθ
Because cos(2θ) = cos^2 θ - sin^2 θ, we can rewrite cos^4 θ - sin^4 θ as cos(4θ). So, we have:
cos^4 θ - sin^4 θ = cos(4θ)
Now, since cos(4θ) = √3/2 for θ = π/12, then:
cos^4 θ - sin^4 θ
= cos(4θ)
= cos(π/3)
= √3/2
Therefore, cos^4 θ - sin^4 θ = √3.