To find the value of cos(64°) × cos(19°) + sin(19°) × sin(64°), we can use the trigonometric identity for the cosine of the sum of two angles:
cos(a + b) = cos(a) × cos(b) - sin(a) × sin(b)
Plugging in the values of a = 64° and b = 19°:
cos(64° + 19°) = cos(64°) × cos(19°) - sin(64°) × sin(19°)
cos(83°) = cos(64°) × cos(19°) - sin(64°) × sin(19°)
Now, sin(83°) = cos(180° - 83°) = cos(97°)
Since cos(83°) and cos(97°) are cofunctions, they are equal. Therefore,
cos(83°) = cos(64°) × cos(19°) - sin(64°) × sin(19°) = cos(97°)
Therefore, cos(64°) × cos(19°) - sin(64°) × sin(19°) = cos(97°)cos(64°) × cos(19°) + sin(19°) × sin(64°) = cos(97°)
Thus, the value of the expression is cos(97°).
To find the value of cos(64°) × cos(19°) + sin(19°) × sin(64°), we can use the trigonometric identity for the cosine of the sum of two angles:
cos(a + b) = cos(a) × cos(b) - sin(a) × sin(b)
Plugging in the values of a = 64° and b = 19°:
cos(64° + 19°) = cos(64°) × cos(19°) - sin(64°) × sin(19°)
cos(83°) = cos(64°) × cos(19°) - sin(64°) × sin(19°)
Now, sin(83°) = cos(180° - 83°) = cos(97°)
Since cos(83°) and cos(97°) are cofunctions, they are equal. Therefore,
cos(83°) = cos(64°) × cos(19°) - sin(64°) × sin(19°) = cos(97°)
Therefore, cos(64°) × cos(19°) - sin(64°) × sin(19°) = cos(97°)
cos(64°) × cos(19°) + sin(19°) × sin(64°) = cos(97°)
Thus, the value of the expression is cos(97°).