Let's expand both sides of the equation:
Left side: (3x+5)(4x-1)= 3x(4x) + 3x(-1) + 5(4x) + 5(-1)= 12x^2 - 3x + 20x - 5= 12x^2 + 17x - 5
Right side: (6x-3)(2x+7)= 6x(2x) + 6x(7) - 3(2x) - 3(7)= 12x^2 + 42x - 6x - 21= 12x^2 + 36x - 21
Since the left side does not equal the right side, the initial statement is false.
Let's expand both sides of the equation:
Left side: (3x+5)(4x-1)
= 3x(4x) + 3x(-1) + 5(4x) + 5(-1)
= 12x^2 - 3x + 20x - 5
= 12x^2 + 17x - 5
Right side: (6x-3)(2x+7)
= 6x(2x) + 6x(7) - 3(2x) - 3(7)
= 12x^2 + 42x - 6x - 21
= 12x^2 + 36x - 21
Since the left side does not equal the right side, the initial statement is false.