Для удобства вычислений преобразуем тангенс котангенса:
ctg 1125 = 1 / tan 1125 = 1 / tan (135 - 1125) = 1 / tan (-990) = 1 / tan (270) = 1 / cot (270) = -1
Теперь подставим значения в исходное выражение:
cos 630 - sin 1470 - ctg 1125 = cos (2π - 2π + π/3) - sin (π + 2π + π/6) - (-1) = cos (π/3) - sin (π/6) + 1 = √3/2 - 1/2 + 1 = √3/2 + 1/2
Итак, результат выражения cos630 - sin1470 - ctg 1125 равен √3/2 + 1/2.
Для удобства вычислений преобразуем тангенс котангенса:
ctg 1125 = 1 / tan 1125 = 1 / tan (135 - 1125) = 1 / tan (-990) = 1 / tan (270) = 1 / cot (270) = -1
Теперь подставим значения в исходное выражение:
cos 630 - sin 1470 - ctg 1125 = cos (2π - 2π + π/3) - sin (π + 2π + π/6) - (-1) = cos (π/3) - sin (π/6) + 1 = √3/2 - 1/2 + 1 = √3/2 + 1/2
Итак, результат выражения cos630 - sin1470 - ctg 1125 равен √3/2 + 1/2.