18 Ноя 2021 в 19:41
101 +1
0
Ответы
1

Для того чтобы решить эту систему уравнений, можно воспользоваться методом замены переменных или методом исключения переменных.

Метод замены переменных:

Предположим, что x = a и y = b. Тогда первое уравнение примет вид:

a² - 3ab + 14 = 0 (1)

А второе уравнение:

3a² + 2ab - 24 = 0 (2)

Далее можно решить систему уравнений (1) и (2) методами алгебраического анализа, найдя значения переменных a и b. После этого можно найти значения x и y.

Метод исключения переменных:

Домножим первое уравнение на 3 и второе уравнение на -1:

3x² - 9xy + 42 = 0
-3x² - 2xy + 24 = 0

Сложим оба уравнения:

-11xy + 66 = 0

11xy = 66
xy = 6

Подставляем xy = 6 в любое уравнение и находим значения x и y:

x² - 3*6 + 14 = 0
x² - 18 + 14 = 0
x² - 4 = 0
x = ±2

При x = 2:
32² + 22*y - 24 = 0
12 + 4y - 24 = 0
4y = 12
y = 3

При x = -2:
3(-2)² + 2(-2)*y - 24 = 0
12 - 4y - 24 = 0
-4y = 12
y = -3

Таким образом, система уравнений имеет два решения: (2, 3) и (-2, -3).

17 Апр 2024 в 08:39
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 157 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир