To simplify the expression, we can use the trigonometric identities:
Applying these identities to the given expression:
cot(pi/2-a)*cot(3pi/2+a) + sin(2a)
Since cot(pi/2-a) = -tan(a) and cot(3pi/2+a) = -tan(a), we get:
(-tan(a))(-tan(a)) + sin(2a)tan(a)tan(a) + sin(2a)tan^2(a) + 2sin(a)cos(a)
Therefore, the simplified expression is tan^2(a) + 2sin(a)cos(a).
To simplify the expression, we can use the trigonometric identities:
cotangent of the sum/difference of angles: cot(x-y) = cotxcoty + 1/sinxsinysine of double angle: sin(2x) = 2sinxcosxApplying these identities to the given expression:
cot(pi/2-a)*cot(3pi/2+a) + sin(2a)
Since cot(pi/2-a) = -tan(a) and cot(3pi/2+a) = -tan(a), we get:
(-tan(a))(-tan(a)) + sin(2a)
tan(a)tan(a) + sin(2a)
tan^2(a) + 2sin(a)cos(a)
Therefore, the simplified expression is tan^2(a) + 2sin(a)cos(a).