Mn(m-n) - (m^2 - n^2)(2m+n)
Expanding the second term using the difference of squares formula (a^2 - b^2 = (a+b)(a-b)):
Mn(m-n) - ((m+n)(m-n))(2m+n)
Now, simplify further:
Mn(m-n) - (m+n) (m-n) (2m+n)
Now, distribute:
Mn^2 - 2m^3n - 2n^3m - n^2m + m^2n
Combine like terms:
Therefore, the final expression is:
Mn(m-n) - (m^2 - n^2)(2m+n)
Expanding the second term using the difference of squares formula (a^2 - b^2 = (a+b)(a-b)):
Mn(m-n) - ((m+n)(m-n))(2m+n)
Now, simplify further:
Mn(m-n) - (m+n) (m-n) (2m+n)
Now, distribute:
Mn^2 - 2m^3n - 2n^3m - n^2m + m^2n
Combine like terms:
Mn^2 - 2m^3n - 2n^3m - n^2m + m^2n
Therefore, the final expression is:
Mn^2 - 2m^3n - 2n^3m - n^2m + m^2n