To solve this equation, we can use the double angle identity for sine:
sin(2x) = 2sin(x)cos(x)
Substitute 2a in place of x:
sin(4a) = 2sin(2a)cos(2a)
Now we need to find sin(2a) and cos(2a):
sin(2a) = 2sin(a)cos(a)
cos(2a) = 2cos^2(a) - 1
Now substitute sin(2a) and cos(2a) back into the equation:
sin(4a) = 2(2sin(a)cos(a))(2cos^2(a) - 1)sin(4a) = 4sin(a)cos(a)(2cos^2(a) - 1)sin(4a) = 8cos(a)sin(a)cos^2(a) - 4sin(a)cos(a)sin(4a) = 4cos(a)sin(a)sin(4a) = sin(2a)
Therefore, 4sin(a)cos(a)cos(2a) = sin(4a) as required.
To solve this equation, we can use the double angle identity for sine:
sin(2x) = 2sin(x)cos(x)
Substitute 2a in place of x:
sin(4a) = 2sin(2a)cos(2a)
Now we need to find sin(2a) and cos(2a):
sin(2a) = 2sin(a)cos(a)
cos(2a) = 2cos^2(a) - 1
Now substitute sin(2a) and cos(2a) back into the equation:
sin(4a) = 2(2sin(a)cos(a))(2cos^2(a) - 1)
sin(4a) = 4sin(a)cos(a)(2cos^2(a) - 1)
sin(4a) = 8cos(a)sin(a)cos^2(a) - 4sin(a)cos(a)
sin(4a) = 4cos(a)sin(a)
sin(4a) = sin(2a)
Therefore, 4sin(a)cos(a)cos(2a) = sin(4a) as required.