Упростите выражения: 1 - cos(в квадрате)x cos(в квадрате)α/1 - sin α (tgα + ctgα)(в квадрате) - (tgα - ctgα)(в квадрате) Докажите тождества: sin α/1 - cos α = 1 + cos α/sin α

4 Дек 2021 в 19:43
50 +1
0
Ответы
1
Упростим данное выражение:

1 - cos^2(x) cos^2(α) / (1 - sin(α) (tg(α) + ctg(α))^2 - (tg(α) - ctg(α))^2

Упростим знаменатель:

1 - (1 - cos^2(α)) * (tg^2(α) + 2tg(α)ctg(α) + ctg^2(α)) - (tg^2(α) - 2tg(α)ctg(α) + ctg^2(α))

1 - tg^2(α) - ctg^2(α) - 2tg(α)ctg(α) + cos^2(α) * (tg^2(α) + 2tg(α)ctg(α) + ctg^2(α)) - tg^2(α) + ctg^2(α) - 2tg(α)ctg(α)

1 - tg^2(α) - ctg^2(α) - 2tg(α)ctg(α) + tg^2(α)cos^2(α) + 2tg(α)ctg(α)cos^2(α) + ctg^2(α)cos^2(α) - tg^2(α) + ctg^2(α) - 2tg(α)ctg(α)

Выражение сокращается до:

1 - cos^2(α) = sin^2(α)

Теперь у нас осталось:

cos^2(x) * cos^2(α) / sin^2(α)

Подставим sin^2(α) вместо 1 - cos^2(α):

cos^2(x) cos^2(α) / sin^2(α) = cos^2(x) cos^2(α) / (1 - cos^2(α))

Подставим sin^2(α) и упростим:

cos^2(x) cos^2(α) / (1 - cos^2(α)) = cos^2(x) cos^2(α) / sin^2(α) = cos^2(x) / sin^2(x) = ctg^2(x)

Таким образом, данное выражение равно ctg^2(x).

Докажем тождество:

sin(α) / (1 - cos(α)) = (1 + cos(α)) / sin(α)

Домножим обе части выражения на sin(α) * (1 - cos(α)):

sin(α) sin(α) = (1 + cos(α)) (1 - cos(α))

sin^2(α) = 1 - cos^2(α)

sin^2(α) = sin^2(α)

Тождество доказано.

17 Апр 2024 в 08:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир