Как доказать, что всякое простое число (начиная с 5), увеличенное или уменьшенное на 1, делится на 6

8 Дек 2021 в 19:43
38 +1
0
Ответы
1

Доказательство:

Пусть p - простое число (p ≥ 5).

Так как p ≥ 5 и простое, то оно не делится на 2 и на 3. Следовательно, остатки от деления p на 2 и 3 равны соответственно 1 и 2.

Таким образом, p ≡ 1 (mod 2) и p ≡ 2 (mod 3).

Так как p не делится на 2 и 3, то p + 1 и p - 1 обязательно делятся на 2 и на 3.

Следовательно, p + 1 и p - 1 делятся на 6.

Таким образом, всякое простое число (начиная с 5), увеличенное или уменьшенное на 1, делится на 6.

16 Апр в 20:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 89 890 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир